Equivariant closure operators and trisp closure maps
نویسندگان
چکیده
منابع مشابه
From torsion theories to closure operators and factorization systems
Torsion theories are here extended to categories equipped with an ideal of 'null morphisms', or equivalently a full subcategory of 'null objects'. Instances of this extension include closure operators viewed as generalised torsion theories in a 'category of pairs', and factorization systems viewed as torsion theories in a category of morphisms. The first point has essentially been treated in [15].
متن کاملFuzzy Closure Systems and Fuzzy Closure Operators
We introduce fuzzy closure systems and fuzzy closure operators as extensions of closure systems and closure operators. We study relationships between fuzzy closure systems and fuzzy closure spaces. In particular, two families F (S) and F (C) of fuzzy closure systems and fuzzy closure operators on X are complete lattice isomorphic.
متن کاملn-closure systems and n-closure operators
It is very well known and permeating the whole of mathematics that a closure operator on a given set gives rise to a closure system, whose constituent sets form a complete lattice under inclusion, and vice-versa. Recent work of Wille on triadic concept analysis and subsequent work by the author on polyadic concept analysis led to the introduction of complete trilattices and complete n-lattices,...
متن کاملClosure Operators and Polarities
Basic results are obtained concerning Galois connections between collections of closure operators (of various types) and collections consisting of subclasses of (pairs of) morphisms in M for an 〈E,M 〉 -category X . In effect, the “lattice” of closure operators on M is shown to be equivalent to the fixed point lattice of the polarity induced by the orthogonality relation between composable pairs...
متن کاملClosure Operators and Subalgebras
In this article we present several logical schemes. The scheme SubrelstrEx concerns a non empty relational structure A, a set B, and a unary predicate P, and states that: There exists a non empty full strict relational substructure S of A such that for every element x of A holds x is an element of S if and only if P[x] provided the following conditions are met: • P[B], • B ∈ the carrier of A. T...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Topology and its Applications
سال: 2010
ISSN: 0166-8641
DOI: 10.1016/j.topol.2010.02.011